首页> 外文OA文献 >A gaussian process data modelling and maximum likelihood data fusion method for multi-sensor cmm measurement of freeform surfaces
【2h】

A gaussian process data modelling and maximum likelihood data fusion method for multi-sensor cmm measurement of freeform surfaces

机译:用于自由曲面的多传感器cmm测量的高斯过程数据建模和最大似然数据融合方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Nowadays, the use of freeform surfaces in various functional applications has become more widespread. Multi-sensor coordinate measuring machines (CMMs) are becoming popular and are produced by many CMM manufacturers since their measurement ability can be significantly improved with the help of different kinds of sensors. Moreover, the measurement accuracy after data fusion for multiple sensors can be improved. However, the improvement is affected by many issues in practice, especially when the measurement results have bias and there exists uncertainty regarding the data modelling method. This paper proposes a generic data modelling and data fusion method for the measurement of freeform surfaces using multi-sensor CMMs and attempts to study the factors which affect the fusion result. Based on the data modelling method for the original measurement datasets and the statistical Bayesian inference data fusion method, this paper presents a Gaussian process data modelling and maximum likelihood data fusion method for supporting multi-sensor CMM measurement of freeform surfaces. The datasets from different sensors are firstly modelled with the Gaussian process to obtain the mean surfaces and covariance surfaces, which represent the underlying surfaces and associated measurement uncertainties. Hence, the mean surfaces and the covariance surfaces are fused together with the maximum likelihood principle so as to obtain the statistically best estimated underlying surface and associated measurement uncertainty. With this fusion method, the overall measurement uncertainty after fusion is smaller than each of the single-sensor measurements. The capability of the proposed method is demonstrated through a series of simulations and real measurements of freeform surfaces on a multi-sensor CMM. The accuracy of the Gaussian process data modelling and the influence of the form error and measurement noise are also discussed and demonstrated in a series of experiments. The limitations and some special cases are also discussed, which should be carefully considered in practice.
机译:如今,自由曲面在各种功能应用中的使用已变得越来越普遍。多传感器坐标测量机(CMM)变得越来越流行,并且由许多CMM制造商生产,因为借助各种传感器可以显着提高其测量能力。而且,可以提高多个传感器的数据融合之后的测量精度。但是,在实践中,改进受到许多问题的影响,尤其是当测量结果存在偏差并且数据建模方法存在不确定性时。本文提出了一种使用多传感器三坐标测量机测量自由曲面的通用数据建模和数据融合方法,并试图研究影响融合结果的因素。基于原始测量数据集的数据建模方法和统计贝叶斯推理数据融合方法,提出了一种高斯过程数据建模和最大似然数据融合方法,以支持自由曲面的多传感器CMM测量。首先使用高斯过程对来自不同传感器的数据集进行建模,以获得表示基础表面和相关测量不确定性的平均表面和协方差表面。因此,将平均曲面和协方差曲面与最大似然原理融合在一起,以获得统计上最佳的估计基础曲面和关联的测量不确定性。使用这种融合方法,融合后的总体测量不确定度小于每个单传感器测量的不确定度。通过在多传感器CMM上对自由曲面的一系列模拟和实际测量,证明了该方法的功能。高斯过程数据建模的准确性以及形状误差和测量噪声的影响也在一系列实验中得到了讨论和证明。还讨论了局限性和一些特殊情况,在实践中应仔细考虑。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号